From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021

The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance.


Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725

Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556

Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447

From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021

The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).


Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725

Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556

Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447

From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021

The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).


Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725

Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556

Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447

From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021

The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).


Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725

Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556

Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447

From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021

The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).


Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725

Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556

Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447

From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021

The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance.


Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725

Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556

Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447

From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021

The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).


Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725

Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556

Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447

From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021

The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).


Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725

Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556

Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447

From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021

The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).


Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725

Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556

Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447

From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021

The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).


Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725

Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556

Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447

From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021

The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).


Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725

Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556

Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447

From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021

The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).


Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725

Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556

Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447

From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021

The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).


Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725

Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556

Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447

From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021

The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).


Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725

Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556

Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447

From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021

The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance.


Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725

Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556

Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447

From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021

The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).


Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725

Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556

Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447

From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021

The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with KpnI-linearized pMS188 plasmid (Schroda et al., 2002) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).


Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725

Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556

Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J. 31: 445–455

From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021

The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with KpnI-linearized pMS188 plasmid (Schroda et al., 2002) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).


Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725

Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556

Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J. 31: 445–455

From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021

The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with KpnI-linearized pMS188 plasmid (Schroda et al., 2002) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).


Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725

Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556

Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J. 31: 445–455

From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021

The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with KpnI-linearized pMS188 plasmid (Schroda et al., 2002) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).


Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725

Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556

Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J. 31: 445–455

From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021

The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with KpnI-linearized pMS188 plasmid (Schroda et al., 2002) conferring zeocin resistance.


Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725

Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556

Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J. 31: 445–455

From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021

The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with KpnI-linearized pMS188 plasmid (Schroda et al., 2002) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).


Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725

Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556

Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J. 31: 445–455

From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021

The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with KpnI-linearized pMS188 plasmid (Schroda et al., 2002) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).


Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725

Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556

Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J. 31: 445–455

From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021

The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with KpnI-linearized pMS188 plasmid (Schroda et al., 2002) conferring zeocin resistance.


Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725

Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556

Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J. 31: 445–455

From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021

The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with KpnI-linearized pMS188 plasmid (Schroda et al., 2002) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).


Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725

Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556

Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J. 31: 445–455

From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021

The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with KpnI-linearized pMS188 plasmid (Schroda et al., 2002) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).


Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725

Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556

Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J. 31: 445–455

From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021

The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with KpnI-linearized pMS188 plasmid (Schroda et al., 2002) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).


Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725

Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556

Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J. 31: 445–455

From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021

The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with KpnI-linearized pMS188 plasmid (Schroda et al., 2002) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).


Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725

Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556

Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J. 31: 445–455

From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021

The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with KpnI-linearized pMS188 plasmid (Schroda et al., 2002) conferring zeocin resistance.


Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725

Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556

Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J. 31: 445–455

From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021

The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with KpnI-linearized pMS188 plasmid (Schroda et al., 2002) conferring zeocin resistance.


Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725

Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556

Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J. 31: 445–455